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Review

• An RL agent’s goal is to find a policy that maximizes the expected 
return (the expected sum of rewards it receives).



Gridworlds

• Gridworlds are common examples used when learning about RL 
algorithms.

• They are not important problems, but rather tools for 
understanding RL and RL agent behavior.

• Gridworlds range in difficulty from trivial to nearly impossible.



Gridworlds: States

• Each cell in the grid is a state.
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• Each cell in the grid is a state.
• They could be numbered, 1, 2, 3, …
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Gridworlds: States

• Each cell in the grid is a state.
• They could be numbered, 1, 2, 3, …
• They could be represented as (𝑥𝑥,𝑦𝑦)

coordinates

• RL includes problems with 
continuous states (e.g., joint angles, 
blood glucose, etc.).

• This problem has discrete states.
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Gridworlds: States

• Each cell in the grid is a state.
• They could be numbered, 1, 2, 3, …
• They could be represented as (𝑥𝑥,𝑦𝑦)

coordinates

• RL includes problems with 
continuous states (e.g., joint angles, 
blood glucose, etc.).

• This problem has discrete states.
• For simplicity, at first I recommend 

thinking of discrete states as being 
integers, 1, 2, …
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Gridworlds: States

• The set of all possible states in an RL 
problem is called the state set, 𝒮𝒮.

• Here, 𝒮𝒮 = 1,2, … , 25
• The state at time 𝑡𝑡 is 𝑆𝑆𝑡𝑡
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Gridworlds: Actions

• There are typically four actions, up, 
down, left, and right.

• The set of possible actions is called 
the action set and is denoted by 𝒜𝒜.

• Here 𝒜𝒜 = up, down, left, right
• The action at time 𝑡𝑡 is 𝐴𝐴𝑡𝑡

up

left right

down



Gridworlds: Transition Dynamics

• Taking an action that would cause the 
agent to leave the grid usually results 
in the agent not moving.

up

left right
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Gridworlds: Transition Dynamics

• Taking an action that would cause the 
agent to leave the grid usually results 
in the agent not moving.

• Sometimes gridworlds contain 
“obstacles”, which are cells in the grid 
that cannot be entered.

up

left
right

down



Gridworld: State Transition Dynamics

• Often the action the agent 
selects always succeeds 
(assuming the agent doesn’t 
leave the grid).

up
𝑝𝑝 = 1.0



Gridworld: State Transition Dynamics

• Often the action the agent 
selects always succeeds 
(assuming the agent doesn’t 
leave the grid).

• Sometimes actions have a 
probability of failing or 
sending the agent in the 
wrong direction.

up
𝑝𝑝 = .8

up
𝑝𝑝 = 0.1

up
𝑝𝑝 = 0.1



Gridworld: State Transition Dynamics

• The function describing how states 
transition given actions is called the 
transition function, 𝑝𝑝

• For all states 𝑠𝑠 and 𝑠𝑠𝑠 and actions 𝑎𝑎:
𝑝𝑝 𝑠𝑠,𝑎𝑎, 𝑠𝑠′ = Pr(𝑆𝑆𝑡𝑡+1 = 𝑠𝑠′|𝑆𝑆𝑡𝑡 = 𝑠𝑠,𝐴𝐴𝑡𝑡 = 𝑎𝑎)

• Here, 𝑝𝑝 13, up, 14 = 0.1

up
𝑝𝑝 = .8

up
𝑝𝑝 = 0.1

up
𝑝𝑝 = 0.1

State 13 State 14



Gridworld: Rewards
• Whenever:

• The state is 𝑆𝑆𝑡𝑡
• The agent selects action 𝐴𝐴𝑡𝑡
• The state transitions to 𝑆𝑆𝑡𝑡+1

• The environment also emits a reward, 𝑅𝑅𝑡𝑡.
• The reward function 𝑅𝑅 gives the expected 

reward given a state and action:
𝑅𝑅 𝑠𝑠,𝑎𝑎 = 𝐄𝐄 𝑅𝑅𝑡𝑡 𝑆𝑆𝑡𝑡 = 𝑠𝑠,𝐴𝐴𝑡𝑡 = 𝑎𝑎].

• If rewards are deterministic given 𝑠𝑠 and 𝑎𝑎, 
then the reward function specifies the 
reward:

𝑅𝑅𝑡𝑡 = 𝑅𝑅 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡 .
• We will focus on this simplified setting.

𝑆𝑆𝑡𝑡 𝑆𝑆𝑡𝑡+1

𝑅𝑅𝑡𝑡



Gridworld: Initial State Distribution

• The initial state 𝑆𝑆0 need not be 
deterministic.

• The initial state distribution 𝑑𝑑0 
specifies the distribution of the 
initial state:

𝑑𝑑0 𝑠𝑠 = Pr 𝑆𝑆0 = 𝑠𝑠

𝑝𝑝 = 0.5 𝑝𝑝 = 0.25

𝑝𝑝 = 0.25



Gridworld: Teriminal States
• The definition of terminal states varies by 

source.
• For this course, an episode ends when the 

agent enters a terminal state.
• Sometimes the goal is for the agent to avoid 

the terminal state
• Episodes end when the robot falls over

• Sometimes the goal is for the agent to reach 
the terminal state

• Episodes end when the robot escapes the maze
• Sometimes these terminal states are called goal 

states.
• Sometimes the goal does not relate to 

terminal states.

Terminal 
State



Gridworld: Policy and Optimal Policies

• A policy is one way for an agent to select actions, and is denoted 
by 𝜋𝜋, where

𝜋𝜋 𝑠𝑠, 𝑎𝑎 = Pr 𝐴𝐴𝑡𝑡 = 𝑎𝑎|𝑆𝑆𝑡𝑡 = 𝑠𝑠 .
• The agent’s goal is to find an optimal policy 𝜋𝜋∗, which is one that 

maximizes the expected discounted sum of rewards:

𝜋𝜋∗ ∈ arg max
𝜋𝜋

𝐄𝐄 �
𝑡𝑡=0

∞

𝛾𝛾𝑡𝑡𝑅𝑅𝑡𝑡 .

• 𝛾𝛾 ∈ 0,1  is the reward discount parameter.
• Smaller values of gamma result in a smaller weight on rewards that occur 

farther in the future.
• Most people would take one cookie today rather than two cookies a year from now!

Note: There could be 
more than one optimal 
policy!



Markov Decision Process
• A Markov decision process (MDP) is a mathematical formulation of an RL 

problem.
• It is a tuple (𝒮𝒮,𝒜𝒜,𝑝𝑝,𝑅𝑅,𝑑𝑑0, 𝛾𝛾)

• 𝒮𝒮 is the set of possible states or state set
• 𝒜𝒜 is the set of possible actions or action set
• 𝑝𝑝 is the transition function, where 𝑝𝑝 𝑠𝑠,𝑎𝑎, 𝑠𝑠′ = Pr 𝑆𝑆𝑡𝑡+1 = 𝑠𝑠′|𝑆𝑆𝑡𝑡 = 𝑠𝑠,𝐴𝐴𝑡𝑡 = 𝑎𝑎
• 𝑅𝑅 is the reward function, where 𝑅𝑅 𝑠𝑠, 𝑎𝑎 = 𝐄𝐄 𝑅𝑅𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑠𝑠,𝐴𝐴𝑡𝑡 = 𝑎𝑎
• 𝑑𝑑0 is the initial state distribution, where 𝑑𝑑0 𝑠𝑠 = Pr 𝑆𝑆0 = 𝑠𝑠
• 𝛾𝛾 ∈ [0,1] is the reward discount parameter

• A policy 𝜋𝜋 characterizes action selection: 𝜋𝜋 𝑠𝑠,𝑎𝑎 = Pr 𝐴𝐴𝑡𝑡 = 𝑎𝑎|𝑆𝑆𝑡𝑡 = 𝑠𝑠
• The agent’s goal when faced with an MDP is to find an optimal policy:

𝜋𝜋∗ ∈ arg max
𝜋𝜋

𝐄𝐄 �
𝑡𝑡=0

∞

𝛾𝛾𝑡𝑡𝑅𝑅𝑡𝑡 .



Why “Markov” decision process?

• The Markov property means that the future is independent of the 
past given the present.

• The transition function satisfies the Markov property:
𝑝𝑝 𝑠𝑠, 𝑎𝑎, 𝑠𝑠′ = Pr(𝑆𝑆𝑡𝑡+1 = 𝑠𝑠′|𝑆𝑆𝑡𝑡 = 𝑠𝑠,𝐴𝐴𝑡𝑡 = 𝑎𝑎)

• The distribution of the “next state” 𝑆𝑆𝑡𝑡+1 does not depend on any of the 
states, actions, or rewards prior to 𝑆𝑆𝑡𝑡  (when 𝑆𝑆𝑡𝑡  is known)



Parameterized Policy

• A parametric policy 𝜋𝜋 is like a “parametric model” in supervised 
learning - a policy that has policy parameters 𝜃𝜃.

• This is akin to a parametric model for supervised learning that has model 
parameters 𝑤𝑤.



How to represent 𝜋𝜋?

• Tabular softmax:
• Store a value 𝜃𝜃𝑠𝑠,𝑎𝑎 for each state 𝑠𝑠 and action 𝑎𝑎

• 𝜋𝜋 𝑠𝑠,𝑎𝑎 = Pr 𝐴𝐴𝑡𝑡 = 𝑎𝑎 𝑆𝑆𝑡𝑡 = 𝑠𝑠 = 𝑒𝑒𝜃𝜃𝑠𝑠,𝑎𝑎

∑𝑎𝑎′ 𝑒𝑒
𝜃𝜃𝑠𝑠,𝑎𝑎′

• Note: Limited to problems with finite state and action sets
• Linear softmax:

• Store a vector of weights 𝜃𝜃𝑎𝑎  for each action 𝑎𝑎.
• Define a feature generating function 𝜙𝜙 that takes states as input

• 𝜙𝜙 𝑠𝑠  is a vector of features for state 𝑠𝑠

• 𝜋𝜋 𝑠𝑠,𝑎𝑎 = 𝑒𝑒𝜃𝜃 𝑎𝑎⋅𝜙𝜙 𝑠𝑠

∑𝑎𝑎′ 𝑒𝑒
𝜃𝜃𝑎𝑎′⋅𝜙𝜙 𝑠𝑠 = 𝑒𝑒 ∑𝑖𝑖=1

𝑚𝑚 𝜃𝜃𝑎𝑎,𝑖𝑖𝜙𝜙𝑖𝑖 𝑠𝑠

∑𝑎𝑎′ 𝑒𝑒
∑𝑖𝑖=1
𝑚𝑚 𝜃𝜃𝑎𝑎′,𝑖𝑖𝜙𝜙𝑖𝑖 𝑠𝑠

• Note: Limited to problems with finite action sets (but works with continuous 
states!)



How to represent 𝜋𝜋?

• Artificial Neural Network (with weights 𝜃𝜃)

• 𝜋𝜋 𝑠𝑠, 𝑎𝑎 = 𝑒𝑒𝑝𝑝𝑠𝑠,𝑎𝑎

∑𝑎𝑎′ 𝑒𝑒
𝑝𝑝𝑠𝑠,𝑎𝑎′

𝑆𝑆𝑡𝑡 …

𝑝𝑝𝑠𝑠,𝑎𝑎1
𝑝𝑝𝑠𝑠,𝑎𝑎2



Reward Design

• The agent always starts in the top-left.
• The agent’s goal is to reach the bottom 

right state (which is terminal)
• Actions succeed with probability 0.7
• Actions fail with probability 0.3

• When actions fail, one of the other three 
actions is applied (each with probability 0.1)

• There are two obstacle cells (black).
• There is one water-filled cell (blue) that 

should be avoided.
• Question: How would you define rewards 

(and 𝛾𝛾) for this problem?

Start

Goal



Reward Design

• Do not reward the agent based on how you think it should solve 
the problem.

• This often results in completely different undesirable behavior.

• Provide rewards based only on the main goal.
• Shaping rewards are rewards designed to encourage an agent 

towards specific behavior.
• There are rules that can be followed to ensure they do not change optimal 

behavior.
• Avoid shaping rewards otherwise!



Example:



End
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